Multiflux modeling of transport in a general transistor structure

Abstract

We present here a multiflux based modeling of carrier transport in general transistor structure. It is also presented how an equivalent circuit can be calculated using connected scattering-centers based on phase-space participation

Three steps of calculation

steps are independent from each others

M Ű E G Y E T E M

- ▶ scattering parameters of n-port describe device (at a statistical (averaging) depth)
- ▶ stationary operation (steady-state conditions) is modeled

Some words about Monte-Carlo simulations

Post processing of MC simulations Phase-space parameter extraction

▶ electrons are divided into groups according to their velocity \rightarrow fluxes are formed

current caused by electrons can be calculated : $I = \sum_{p} I_p = \sum_{p} n_p \cdot q$. where I_p is p-th subflux, n_p is number of electron in the p-th subflux mode

 v_x

 S_{12}

f in S_{24}

 S_{42}

PSC

 S_{32}

PSC

 S_{14}

 \sim

- ▶ particle based simulations, using random numbers (MC)
- ▶ different scattering rates used for different interactions
- ▶ electromagnetic effects are included in free flight
- ▶ few assumptions are made \Rightarrow general description
- ▶ effects of different scattering event types can be identified
- ▶ **large** number of simulations needed (a lot of runnings)
- ▶ output of simulations : space and velocity of charge carriers (supercharges) as a function of time
- \blacktriangleright ROI = Region Of Interest (geometry and time)

Modelling a one-dimensional channel

► charge transport takes place only in channel

- ▶ only neighbour cells are used (cold electron transport)
- ▶ green cell shows a general phase-space-cell (PSC)
- S_{22} ▶ red cell is special SPC that represents velocities $v < v_m$ at the beginning (source side) of channel
- ▶ blue cell is at the end (drain side) of channel
 - number of electrons left SPC to downward $\triangleright S_{32} =$ number of electrons came in from right

only from right comes electrons

Equivalent circuit using four-ports

▶ divide (electron) current into n partitions (according to step 2. partitions) \blacktriangleright create equivalent four-ports (EPs) and calculate their scattering parameters

 E_x - electric field along channel

Bibliography

- ▶ R. Hockney, J. Eastwood, "Computer Simulation Using Particles", IOP, New York, 1989.
- ▶ S. Datta, "Electronic Transport in Mesoscopic Systems", Cambridge : Cambridge University Press, 1997.
- ▶ J.P. McKelvey, R. Longini, and T. Brody,"Alternative approach to the solution of added carrier transport problems in semiconductors", Phys. Rev. vol. 123, pp. 51-57, 1961.
- ► K. Simonyi, "Theoretische Elektrotechnik", Leipzig : Barth, 1993.

http://nanoelsim.evt.bme.hu/IGTE2018