LIMITS OF ION PATHLINE CONTROL USING ELECTRIC FIELD

Krisztián VIDA^{1,2} and András REICHARDT^{1, \star} ¹Department of Broadband Infocommunications and Electromagnetic Theory, Budapest University of Technology and Economics, Egry J. u. 18, Hungary ² MSc Student, \star corresponding author : reichardt.andras@vik.bme.hu

Motivation of work

▶ small satellites becoming popular (CubeSat or PocketQube sized)

- ▶ a propulsion system is needed to control the motion of the satellite
- ▶ electric propulsion is a low-weight choice
- ► Can a single thruster steer a satellite or do we need multiple thrusters?

► SMOG-P [https://gnd.bme.hu/smog] PocketQube (5x5x10 cm) at the department

Ion propulsion system

Single layer effect

- ▶ a type of electric propulsion
- ▶ generated ions are accelerated towards the nozzle
- outflying ions push the satellite forward
- \blacktriangleright Xenon or Iodine ions are used fuel tank + control

What requirements did we set for the EM-simulator?

- ▶ use only open-source/free programs
- ▶ gmsh geometry creation and meshing
- ▶ Python-based (NumPy) solver for FEM
- Visualization is made by ParaView
- MATLAB-PDETool were used to testing and analysis of speed and memory

3D effects

cplx

simple model (plane capacitor) to estimate deflection angle

 \blacktriangleright effect of electrode length (L) and potential difference at small input velocity

- ▶ deflection angle of long electrode length
- ▶ red dots different (random) starting point near center of accel. grid
- ▶ slashed line simple model's calculated deflection angle

outline of a nozzle with 3 layers of electrodes

- Par2 Start points Electrode potentials 1,2,3,4,5,6 ► Par1 : -1000,1000,0,0,-1000,1000 ► Par2 : 1000, -1000,0,0,1000,-1000
- ► Cplx : 1000, -1000,1000,-1000,1000,-1000

Conclusions and remarks

- ▶ low speed ions can be controlled ▶ nonlinearity effects caused by nonplanar electrodes
- ▶ in case of CubSat-sized satellite at least 2-3U needed
- ▶ control voltages are limited that limits deflection angles

- ▶ simple model is surprisingly good
- ▶ simple model surprisingly good at low speed
- at high velocity only electric field is not enough
- ▶ line of outflying is not always progresses through center of mass of satellite (torque effect on satellite)

Bibliography

- ▶ SMOG-P, Official Site, http://gnd.bme.hu/smog
- ▶ H. Henke, Elektromagnetische Felder, 6th Ed., Springer Verlag, Berlin, 2020
- ▶ R. Hockney, J. Eastwood, "Computer Simulation Using Particles", IOP, New York, 1989.
- ▶ Jahn, Robert G. (1968). "Physics of Electric Propulsion" (1st ed.). McGraw Hill Book Company
- ► A. Reichardt et al., "Optimization of particle trajectories inside an ion-thruster", Proc. of 19th International IGTE Symposium, Graz, 2020.

http://nanoelsim.hvt.bme.hu/IGTE2022